Feeds:
Posts
Comments

Posts Tagged ‘size’

This first appeared on November 16, 2009, as a feature at ScientificBlogging.com

No one draws pictures of heads with little gears or hydraulics inside any more. The modern conceptualization of the brain is firmly computational. The brain may be wet, squooshy, and easy to serve with an ice cream scooper, but it is nevertheless a computer.

However, there is a rather blaring difficulty with this view, and it is encapsulated in the following question: If our brains are computers, why doesn’t size matter? In the real world of computers, bigger tends to mean smarter. But this is not the case for animals: bigger brains are not generally smarter. Most of the brain size differences across mammals seem to make no behavioral difference at all to the animal.

Instead, the greatest driver of brain size is not how smart the animal is, but how big the animal is. Brain size doesn’t much matter – instead, it is body size that matters. That is not what one would expect of a computer in the head. Brain scientists have long known this. For example, take a look at the plot below showing how brain mass varies with body mass. You can see how tightly correlated they are. If one didn’t know that the brain was the thinking organ and consequently lobbed it into the same pile as the liver, heart and spleen (FYI, I keep my pile of organs in the crawl space), then one would not find it unusual that it increases so much with body size. Organs do that.

But the brain is supposed to be a computer of some strange kind. And yet it is acting just like a lowly organ. It gets bigger merely because the animal’s body is bigger, even though the animal may be no smarter. The plot below, from a 2007 article of mine (in Kaas JH (ed.) Evolution of Nervous Systems. Oxford, Elsevier) shows how behavioral complexity varies with brain mass. There is no correlation. Bigger and bigger brains, and seemingly doing nothing for the animal!

It has long been clear to neuroscientists that what does correlate nicely with animal intellgence is how high above the best-fit line a point is in the brain-versus-body plot we saw earlier. This is called the encephalization quotient, or EQ. It is simply a measure of how big the brain is once one has controlled for body size. EQ matches our intuitive ranking of mammalian intelligence, and in a 2003 paper (in the Journal of Theoretical Biology) I showed that it also matches quantitative measures of their intelligence (namely, the number of items in ethograms as measured by ethologists). The plot is shown below, where you can see that the number of behaviors in each of the mammalian orders rises strongly with EQ.

But although this is well known by neurobiologists, there is still no accepted answer to why brains get bigger with body size. Why should a cow have a brain 200 times larger than a roughly equally smart rat, or 10 times larger than a clearly-smarter house cat? One of my older research areas, in fact, aimed to explain why brains change in the ways they do as they grow in size from mouse to whale (http://www.changizi.com/changizi_lab.html#neocortex), and yet, embarrassingly, I have no idea why these brains are increasing with body size at all. If a dull-witted cow could just stick a tiny rat brain into its head and get all the behavioral complexity it needs, then brains would come in just one size, and I would have had no research to work on concerning the manner in which brains scale up in size.

So, here’s a plan. I would like to hear your hypotheses for why brains increase so quickly with body mass (namely as the 3/4 power). I will let you know if the idea is new, and I will see if I can give your idea a good thrashing. What’s at stake here is our very framework for conceptualizing what the brain is. Perhaps you can say why it is a computer, and that greater body size brings in certain subtle computational demands that explain why brain volume should increase as it does with body mass. Or, more exciting, perhaps you can propose an altogether novel framework for thinking about the brain, one that makes the enigmatic “size matters” issue totally obvious.

To the comments!…

This is where the fun of the piece begins, because at ScientificBlogging.com there were more than 70 comments, all quite productive (no trolls). So, go here and scroll down to the comments.  …and leave one!

Mark Changizi is a professor of cognitive science at Rensselaer Polytechnic Institute, and the author of The Vision Revolution (Benbella Books).

o one draws pictures of heads with little gears or hydraulics inside any more. The modern conceptualization of the brain is firmly computational. The brain may be wet, squooshy, and easy to serve with an ice cream scooper, but it is nevertheless a computer.
However, there is a rather blaring difficulty with this view, and it is encapsulated in the following question: If our brains are computers, why doesn’t size matter? In the real world of computers, bigger tends to mean smarter. But this is not the case for animals: bigger brains are not generally smarter. Most of the brain size differences across mammals seem to make no behavioral difference at all to the animal.

Instead, the greatest driver of brain size is not how smart the animal is, but how big the animal is. Brain size doesn’t much matter – instead, it is body size that matters. That is not what one would expect of a computer in the head. Brain scientists have long known this. For example, take a look at the plot below showing how brain mass varies with body mass. You can see how tightly correlated they are. If one didn’t know that the brain was the thinking organ and consequently lobbed it into the same pile as the liver, heart and spleen (FYI, I keep my pile of organs in the crawl space), then one would not find it unusual that it increases so much with body size. Organs do that.

But the brain is supposed to be a computer of some strange kind. And yet it is acting just like a lowly organ. It gets bigger merely because the animal’s body is bigger, even though the animal may be no smarter. The plot below, from a 2007 article of mine (in Kaas JH (ed.) Evolution of Nervous Systems. Oxford, Elsevier) shows how behavioral complexity varies with brain mass. There is no correlation. Bigger and bigger brains, and seemingly doing nothing for the animal!

It has long been clear to neuroscientists that what does correlate nicely with animal intellgence is how high above the best-fit line a point is in the brain-versus-body plot we saw earlier. This is called the encephalization quotient, or EQ. It is simply a measure of how big the brain is once one has controlled for body size. EQ matches our intuitive ranking of mammalian intelligence, and in a 2003 paper (in the Journal of Theoretical Biology) I showed that it also matches quantitative measures of their intelligence (namely, the number of items in ethograms as measured by ethologists). The plot is shown below, where you can see that the number of behaviors in each of the mammalian orders rises strongly with EQ.

But although this is well known by neurobiologists, there is still no accepted answer to why brains get bigger with body size. Why should a cow have a brain 200 times larger than a roughly equally smart rat, or 10 times larger than a clearly-smarter house cat? One of my older research areas, in fact, aimed to explain why brains change in the ways they do as they grow in size from mouse to whale (http://www.changizi.com/changizi_lab.html#neocortex), and yet, embarrassingly, I have no idea why these brains are increasing with body size at all. If a dull-witted cow could just stick a tiny rat brain into its head and get all the behavioral complexity it needs, then brains would come in just one size, and I would have had no research to work on concerning the manner in which brains scale up in size.

So, here’s a plan. I would like to hear your hypotheses for why brains increase so quickly with body mass (namely as the 3/4 power). I will let you know if the idea is new, and I will see if I can give your idea a good thrashing. What’s at stake here is our very framework for conceptualizing what the brain is. Perhaps you can say why it is a computer, and that greater body size brings in certain subtle computational demands that explain why brain volume should increase as it does with body mass. Or, more exciting, perhaps you can propose an altogether novel framework for thinking about the brain, one that makes the enigmatic “size matters” issue totally obvious.

To the comments!…

Comments

It seems to me that total brain mass vs. Body size doesn’t account for different parts of the brain.
Intellegence seems to me to be more related to the percentage of brain mass dedicated to the the Frontal cortex vs the total brain mass. Larger Animals may have need for more brain mass to process more nerve receptors in the larger amount of skin for example, or dedicated to processing Smell. But the part of the brain dedicated to higher level functions may be smaller by some measure (either total mass, or percentage of the rest of the brain mass, etc.)

Mark Changizi's picture

Hi Chuck

“to process more nerve receptors in the larger amount of skin”
Nice. That’s one common hypothesis. And not only more skin and thus more sensory receptors, but more musculature, and so on. But *that* would seem to imply that bigger mammals should have disproportionately larger somatosensory and motor areas, but they don’t.

“dedicated to processing Smell”
But why should larger animals need bigger olfactory neural tissue?

The motor processing functions of an animals brain may be proportionate, but the brain as a whole has to take the total motor processing input and output into account; when you are large and have a complex environment to deal with, you need a concordantly larger brain to deal with it.

Read Full Post »