Archive for the ‘HARNESSED, the book’ Category


My most recent book, Harnessed, has now appeared in Korean translation, with tireless translator Seung Young Noh. For more info about the book, here’s a start: a review by Nobel laureate.


Mark Changizi is Director of Human Cognition at 2AI, a managing director of O2Amp, and the author of HARNESSED: How Language and Music Mimicked Nature and Transformed Ape to Man and THE VISION REVOLUTION. He is finishing up his new book, HUMAN 3.0, a novel about our human future, and working on his next non-fiction book, FORCE OF EMOTION.

Read Full Post »

New Scientist's Top Ten Science Books in 2011, Harnessed is on the right

I’m excited that my new book, Harnessed, is among New Scientist’s top ten science books of 2011, standing aside other authors I admire.

In the book I describe (and present a large battery of new evidence for) my radical new theory for how humans came to have language and music. They’re not instincts (i.e., we didn’t evolve them via natural selection), and they’re not something we merely learn. Instead, speech and music have themselves culturally evolved to fit us (not a new idea) by mimicking fundamental aspects of nature (my idea). Namely speech came to sound like physical events among solid objects, and music came to sound like humans moving and behaving in your midst (that’s why music is evocative). Each of these artifacts thereby came to harness an instinct we apes already possessed, namely auditory object-event recognition and auditory human-movement recognition mechanisms.

The story for how we came to have speech and music is, then, analogous to how we came to have writing, something we know we didn’t evolve. Writing, I’ve argued (in The Vision Revolution), culturally evolved to possess the signature shapes found in nature (and specifically in 3D scenes with opaque objects), and thereby harnessed our visual object-recognition system.

Buy the book here.


Mark Changizi is Director of Human Cognition at 2AI, and the author of
Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man and The Vision Revolution. He is finishing up his new book, HUMAN, a novel about our human future.

Read Full Post »

The Library Journal has a short review by Cynthia Knight of my book, Harnessed.

Many scientists believe that the human brain’s capacity for language is innate, that the brain is actually “hard-wired” for this higher-level functionality. But theoretical neurobiologist Changizi (director of human cognition, 2AI Labs; The Vision Revolution) brilliantly challenges this view, claiming that language (and music) are neither innate nor instinctual to the brain but evolved culturally to take advantage of what the most ancient aspect of our brain does best: process the sounds of nature. By “sounds of nature,” Changizi does not mean birds chirping or rain falling. His provocative theory is based on the identification of striking similarities between the phoneme level of language and the elemental auditory properties of solid objects and, in the case of music, similarities between the sounds of human movement and the basic elements of music.

Verdict: Although the book is written in a witty, informal style, the science underpinning this theoretical argument (acoustics, phonology, physics) could be somewhat intimidating to the nonspecialist. Still, it will certainly intrigue evolutionary biologists, linguists, and cultural anthropologists and is strongly recommended for libraries that have Changizi’s previous book.


Mark Changizi is Director of Human Cognition at 2AI, and the author of
Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man and The Vision Revolution.

Read Full Post »

I had the pleasure of attending scifoo-11. I met some terribly interesting folks, and got to talk a bit about my theory of illusions, and do a session on Harnessed.

One thing led to another, and Nobel laureate Frank Wilczek got hold of my book, “read it with fascination,” and gave it a review at Edge.

Herman Feshbach Professor of Physics, MIT; Recipient, Nobel Prize in Physics, 2004; Author, The Lightness of Being

Mark Changizi re-imagined the transition from ape to human. Physical aspects of that transition are documented in the fossil record, and in our DNA, but what about the mental aspects? How, specifically, did the abilities most characteristically “human”—speech, writing, music—get any traction? Here we face an evolutionary conundrum, for those abilities appear useless until they are fully developed (or even after, in the case of music), while evolution by natural selection must proceed by small steps, each contributing to fitness. Darwin himself worried, on similar grounds, over the emergence of sophisticated eyes; the linguists’ postulated organ of language poses, if anything, a knottier puzzle. Changizi proposes that human speech, writing, and music are grounded in much simpler natural abilities. His proposals are impressively specific: basic speech sounds derive from the sounds of impacts among solid bodies; the basic symbols of writing derive from recurring features of natural scenes; the basic elements of music are abstracted from the natural sounds accompanying human (or ape) movements. Biologically useful abilities to discriminate and interpret those features of the natural world evolved, through relatively small steps of abstraction, into our human toolbox. I took Changizi’s Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man — a freebie at Scifoo! — home, and read it with fascination. It describes many oddball facts about language and music that his ideas make sense of. I’d be amazed if everything he says is right; but at this point I’d be even more surprised if his main ideas, which crack open riddles that have annoyed me for years, aren’t on the right track.


Mark Changizi is Director of Human Cognition at 2AI, and the author of
Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man and The Vision Revolution.

Read Full Post »

Recently I wrote a piece in Psychology Today about how e-books and web-libraries fail to tap into our innate spatial navigation powers, and so don’t serve to harness our brains very well. It has sparked a lively conversation, one heavy on “crazy” Russian power plants and their thousands of real live non-virtual dials and buttons.


Mark Changizi is Director of Human Cognition at 2AI, and the author of The Vision Revolution (Benbella Books, 2009) and the upcoming book Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books, 2011).

Read Full Post »

I’ve argued there’s no imminent singularity, and I’ve thrown water on the idea that the web will become smart or self-aware. But am I just a wet blanket, or do I have a positive vision of our human future?

I have just written up a short “manifesto” of sorts about where we humans are headed, and it appeared in Seed Magazine. It serves not only as guidepost to our long-term future, but also one for how to create better technologies for our brains (part of the aim of the research institute, 2ai, I co-direct with colleague Tim Barber).


Mark Changizi is Director of Human Cognition at 2AI, and the author of The Vision Revolution (Benbella Books, 2009) and the upcoming book Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books, 2011).

Read Full Post »

Christine Ottery (that’s not her above) recently interviewed me about bare naked skin and the origins of color vision, and she wrote up her piece in Scientific American. Read it here.

Also, note the “Lady Gaga” connection in the piece. This is not the first time “Lady Gaga” has been all over my research — the words, not the actual woman. She also comes up in a story about my research on the origins of music, which you can read here at Gaga-galore.

Let’s keep up the pressure, and perhaps Lady Gaga will hire me as her scientific aesthetics advisor…


Mark Changizi is Director of Human Cognition at 2AI, and the author of The Vision Revolution (Benbella Books) and the upcoming book Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books). He is working on his fourth book at the moment, tentatively titled Making Faces, about emotions and facial expressions.


Read Full Post »

I believe that music sounds like people, moving. Yes, the idea may sound a bit crazy, but it’s an old idea, much discussed in the 20th century, and going all the way back to the Greeks. There are lots of things going for the theory, including that it helps us explain…

(1) why our brains are so good at absorbing music (…because we evolved to possess human-movement-detecting auditory mechanisms),

(2) why music emotionally moves us (…because human movement is often expressive of the mover’s mood or state), and

(3) why music gets us moving (…because we’re a social species prone to social contagion).

And as I describe in detail in my upcoming book — Harnessed: How Language and Music Mimicked Nature and Transformed Ape To Man — music has the signature auditory patterns of human movement (something I hint at in this older piece of mine).

Here I’d like to describe a novel way of thinking about what the meaning of music might be. Rather than dwelling on the sound of music, I’d like to focus on the look of music. In particular, what does our brain think music looks like?

It is natural to assume that the visual information streaming into our eyes determines the visual perceptions we end up with, and that the auditory information entering our ears determines the events we hear.

But the brain is more complicated than this. Visual and auditory information interact in the brain, and the brain utilizes both to guess the single scene to render a perception of. For example, the research of Ladan Shams, Yukiyasu Kamitani and Shinsuke Shimojo at Caltech have shown that we perceive a single flash as a double flash if it is paired with a double beep. And Robert Sekuler and others from Brandeis University have shown that if a sound occurs at the time when two balls pass through each other on screen, the balls are instead perceived to have collided and reversed direction.

These and other results of this kind demonstrate the interconnectedness of visual and auditory information in our brain. Visual ambiguity can be reduced with auditory information, and vice versa. And, generally, both are brought to bear in the brain’s attempt to infer the best guess about what’s out there.

Your brain does not, then, consist of independent visual and auditory systems, with separate troves of visual and auditory “knowledge” about the world. Instead, vision and audition talk to one another, and there are regions of cortex responsible for making vision and audition fit one another.

These regions know about the sounds of looks and the looks of sounds.

Because of this, when your brain hears something but cannot see it, your brain does not just sit by and refrain from guessing what it might have looked like.

When your auditory system makes sense of something, it will have a tendency to activate visual areas, eliciting imagery of its best guess as to the appearance of the stuff making the sound.

For example, the sound of your neighbor’s rustling tree may spring to mind an image of its swaying lanky branches. The whine of your cat heard far way may evoke an image of it stuck up high in that tree. And the pumping of your neighbor’s kid’s BB gun can bring forth an image of the gun being pointed at Foofy way up there.

Your visual system has, then, strong opinions about the proper look of the things it hears.

And, bringing ourselves back to music, we can use the visual system’s strong opinions as a means for gauging music’s meaning.

In particular, we can ask your visual system what it thinks the appropriate visual is for music.

If, for example, the visual system responds to music with images of beating hearts, then it would suggest, to my disbelief, that music mimics the sounds of heartbeats. If, instead, the visual system responds with images of pornography, then it would suggest that music sounds like sex. You get the idea.

But in order to get the visual system to act like an oracle, we need to get it to speak. How are we to know what the visual system thinks music looks like?

One approach is to simply ask which visuals are, in fact, associated with music? For example, when people create imagery of musical notes, what does it look like? One cheap way to look into this is simply to do a Google (or any search engine) image search on the term “musical notes.” You might think such a search would merely return images of simple notes on the page.

However, that is not what one finds. To my surprise, actually, most of the images are like the one in the nearby figure, with notes drawn in such a way that they appear to be moving through space.

Notes in musical notation never actually look anything like this, and real musical notes have no look at all (because they are sounds). And yet we humans seem to be prone to visually depicting notes as moving all about.

music, movement, notes 

Music tends to be depicted as moving.

Could these images of notes in motion be due to a more mundane association?

Music is played by people, and people have to move in order to play their instrument. Could this be the source of the movement-music association? I don’t think so, because the movement suggested in these images of notes doesn’t look like an instrument being played. In fact, it is common to show images of an instrument with the notes beginning their movement through space from the instrument: these notes are on their way somewhere, not an indication of the musician’s key-pressing or back-and-forth movements.

Could it be that the musical notes are depicted as moving through space because sound waves move through space? The difficulty with this hypothesis is that all sound moves through space. All sound would, if this were the case, be visually rendered as moving through space, but that’s not the case. For example, speech is not usually visually rendered as moving through space. Another difficulty is that the musical notes are usually meandering in these images, but sound waves are not meandering — sound waves go straight. A third problem with sound waves underlying the visual metaphor is that we never see sound waves in the first place.

Another possible counter-hypothesis is that the depiction of visual movement in the images of musical notes is because all auditory stimuli are caused by underlying events with movement of some kind. The first difficulty, as was the case for sound waves, is that it is not the case that all sound is visually rendered in motion. The second difficulty is that, while it is true that sounds typically require movement of some kind, it need not be movement of the entire object through space. Moving parts within the object may make the noise, without the object going anywhere. In fact, the three examples I gave earlier — leaves rustling, Foofy whining, and the BB gun pumping — are noises without any bulk movement of the object (the tree, Foofy, and the BB gun, respectively). The musical notes in imagery, on the other hand, really do seem to be moving, in bulk, across space.

Music is like tree-rustling, Foofy, BB guns and human speech in that it is not made via bulk movement through space. And yet music appears to be unique in this tendency to be visually depicted as moving through space.

In addition, not only are musical notes rendered as in motion, musical notes tend to be depected as meandering.

When visually rendered, music looks alive and in motion (often along the ground), just what one might expect if music’s secret is that it sounds like people moving.

A Google Image search on “musical notes” is one means by which one may attempt to discern what the visual system thinks music looks like, but another is to simply ask ourselves what is the most common visual display shown during music. That is, if people were to put videos to music, what would the videos tend to look like?

Lucky for us, people do put videos to music! They’re called music videos, of course. And what do they look like?

The answer is so obvious that it hardly seems worth noting: music videos tend to show people moving about, usually in a time-locked fashion to the music, very often dancing.

As obvious as it is that music videos typically show people moving, we must remember to ask ourselves why music isn’t typically visually associated with something very different. Why aren’t music videos mostly of rivers, avalanches, car races, wind-blown grass, lion hunts, fire, or bouncing balls?

It is because, I am suggesting, our brain thinks that humans moving about is what music should look like…because it thinks that humans moving about is what music sounds like.

Musical notes are rendered as meandering through space. Music videos are built largely from people moving, and in a time-locked manner to the music. That’s beginning to suggest that the visual system is under the impression that music sounds like human movement.

But if that’s really what the visual system thinks, then it should have more opinions than simply that music sounds like movement. It should have opinions about what, more exactly, the movement should look like.

Do our visual systems have opinions this precise? Are we picky about the mover that’s put to music?

You bet we are! That’s choreography. It’s not enough to play a video of the Nutcracker ballet during Beatles music, nor will it suffice to play a video of the Nutcracker to the music of Nutcracker, but with a small time lag between them. The video of human movement has to have all the right moves at the right time to be the right fit for the music.

These strong opinions about what music looks like make perfect sense if music mimics human movement sounds. In real life, when people carry out complex behaviors, their visual movements are tightly choreographed with the sounds – because the sight and sound are due to the same event. When you hear movement, you expect to see that same movement. Music sounds to your brain like human movement, which is why when your brain hears music, it expects that any visual of it should be consistent with it.


This was adapted from Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books, 2011). It first appeared July 26, 2010, at Psychology Today.

Mark Changizi is Professor of Human Cognition at 2ai, and author of The Vision Revolution.

Read Full Post »

It is my pleasure to announce that my upcoming book, HARNESSED (Benbella, 2011) can now be pre-ordered at Amazon!

It is about how we came to have language and music. …about how we became modern humans. See https://changizi.wordpress.com/book-harnessed/ for more about the book.


Mark Changizi is Professor of Human Cognition at 2AI, and the author of The Vision Revolution (Benbella Books) and the upcoming book Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books).

Read Full Post »

The Experimental Media and Performing Arts Center (EMPAC) at RPI will be hosting a three-speaker event on Music — Language — Sound and Nature, with Johannes Goebel (Director of EMPAC), David Rothenberg (author of books such as Why Birds Sing) and yours truly. The talks will be short, followed by discussion.

Come see us!

Here’s more information about the event.


Mark Changizi is Professor of Human Cognition at 2AI, and the author of The Vision Revolution (Benbella Books) and the upcoming book Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books).

Read Full Post »

Older Posts »