Feeds:
Posts
Comments

Archive for the ‘Origins of music’ Category

The Library Journal has a short review by Cynthia Knight of my book, Harnessed.

Many scientists believe that the human brain’s capacity for language is innate, that the brain is actually “hard-wired” for this higher-level functionality. But theoretical neurobiologist Changizi (director of human cognition, 2AI Labs; The Vision Revolution) brilliantly challenges this view, claiming that language (and music) are neither innate nor instinctual to the brain but evolved culturally to take advantage of what the most ancient aspect of our brain does best: process the sounds of nature. By “sounds of nature,” Changizi does not mean birds chirping or rain falling. His provocative theory is based on the identification of striking similarities between the phoneme level of language and the elemental auditory properties of solid objects and, in the case of music, similarities between the sounds of human movement and the basic elements of music.

Verdict: Although the book is written in a witty, informal style, the science underpinning this theoretical argument (acoustics, phonology, physics) could be somewhat intimidating to the nonspecialist. Still, it will certainly intrigue evolutionary biologists, linguists, and cultural anthropologists and is strongly recommended for libraries that have Changizi’s previous book.

~~~

Mark Changizi is Director of Human Cognition at 2AI, and the author of
Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man and The Vision Revolution.

Read Full Post »

Daniel Levitin reviews my new book, Harnessed, in the WSJ. And he’s not happy about it.

Now, I’m not a fan of tit-for-tat responses to book reviews, so I’ll let you gauge Levitin’s arguments for yourself after reading my book.

But one casualty of his review is humor — or Levitin’s lack of recognition of it — and that I’ll correct here.

You see, in my book I boast, as Levitin tells us, “about classrooms of undergraduates standing in awe of” me.

What a start to a review! I’m painted as a boastful braggart on the first line of entry into ChangiziLand (“ChangiziLand” is where all my awe-filled followers live).

And, my god, it’s true! I indeed do say something along those lines! In fact, my own words now (p. 32):

“It can be difficult for students to attract my attention when I am lecturing. My occasional glances in their direction aren’t likely to notice a static arm raised in the standing-room-only lecture hall…”

What. An. Arse! …I’m referring to me.

Except– Wait. I wrote more.

“…and so they are reduced to jumping and gesturing wildly in the hope of catching my eye. And that’s why, whenever possible, I keep the house lights turned off.”

Well that’s peculiar. Are my students really “jumping and gesturing wildly”? Really? And do I actually turn the house lights off to prevent my having to view said wild gesturing?

Perhaps. Levitin doesn’t know me from Adam, so, uh, maybe that really happens in my lectures.

But here’s the fuller excerpt from that section…

It can be difficult for students to attract my attention when I am lecturing. My occasional glances in their direction aren’t likely to notice a static arm raised in the standing-room-only lecture hall, and so they are reduced to jumping and gesturing wildly in the hope of catching my eye. And that’s why, whenever possible, I keep the house lights turned off. There are, then, three reasons why my students have trouble visually signaling me: (i) they tend to be behind my head as I write on the chalkboard, (ii) many are occluded by other people, are listening from behind pillars, or are craning their necks out in the hallway, and (iii) they’re literally in the dark.

These three reasons are also the first ones that come to mind for why languages everywhere employ audition (with the secondary exceptions of writing and signed languages for the deaf) rather than vision. We cannot see behind us, through occlusions, or in the dark; but we can hear behind us, through occlusions, and in the dark. In situations where one or more of these — (i), (ii), and (iii) above — apply, vision fails, but audition is ideal. Between me and the students in my course lectures, all three of these conditions apply, and so vision is all but useless as a route to my attention. In such a scenario a student could develop a firsthand appreciation of the value of speech for orienting a listener. And if it weren’t for the fact that I wear headphones blasting Beethoven when I lecture, my students might actually learn this lesson.

And did you hear that last part? I jam to classical music during my lecturing so that I cannot possibly hear any questions from students. That’s just…impractical!

If it still wasn’t obvious that I was joking, several paragraphs further down I indicate — just for the barely-reading, I-already-think-Changizi-is-a-prick reader — that my earlier-mentioned gesticulating students are fictional.

~~~

Mark Changizi is God of Human Cognition at 2AI, and the author of most excellent books such as The Vision rEvolution and Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man.

Read Full Post »

Christine Ottery (that’s not her above) recently interviewed me about bare naked skin and the origins of color vision, and she wrote up her piece in Scientific American. Read it here.

Also, note the “Lady Gaga” connection in the piece. This is not the first time “Lady Gaga” has been all over my research — the words, not the actual woman. She also comes up in a story about my research on the origins of music, which you can read here at Gaga-galore.

Let’s keep up the pressure, and perhaps Lady Gaga will hire me as her scientific aesthetics advisor…

~~~

Mark Changizi is Director of Human Cognition at 2AI, and the author of The Vision Revolution (Benbella Books) and the upcoming book Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books). He is working on his fourth book at the moment, tentatively titled Making Faces, about emotions and facial expressions.

 

Read Full Post »

I believe that music sounds like people, moving. Yes, the idea may sound a bit crazy, but it’s an old idea, much discussed in the 20th century, and going all the way back to the Greeks. There are lots of things going for the theory, including that it helps us explain…

(1) why our brains are so good at absorbing music (…because we evolved to possess human-movement-detecting auditory mechanisms),

(2) why music emotionally moves us (…because human movement is often expressive of the mover’s mood or state), and

(3) why music gets us moving (…because we’re a social species prone to social contagion).

And as I describe in detail in my upcoming book — Harnessed: How Language and Music Mimicked Nature and Transformed Ape To Man — music has the signature auditory patterns of human movement (something I hint at in this older piece of mine).

Here I’d like to describe a novel way of thinking about what the meaning of music might be. Rather than dwelling on the sound of music, I’d like to focus on the look of music. In particular, what does our brain think music looks like?

It is natural to assume that the visual information streaming into our eyes determines the visual perceptions we end up with, and that the auditory information entering our ears determines the events we hear.

But the brain is more complicated than this. Visual and auditory information interact in the brain, and the brain utilizes both to guess the single scene to render a perception of. For example, the research of Ladan Shams, Yukiyasu Kamitani and Shinsuke Shimojo at Caltech have shown that we perceive a single flash as a double flash if it is paired with a double beep. And Robert Sekuler and others from Brandeis University have shown that if a sound occurs at the time when two balls pass through each other on screen, the balls are instead perceived to have collided and reversed direction.

These and other results of this kind demonstrate the interconnectedness of visual and auditory information in our brain. Visual ambiguity can be reduced with auditory information, and vice versa. And, generally, both are brought to bear in the brain’s attempt to infer the best guess about what’s out there.

Your brain does not, then, consist of independent visual and auditory systems, with separate troves of visual and auditory “knowledge” about the world. Instead, vision and audition talk to one another, and there are regions of cortex responsible for making vision and audition fit one another.

These regions know about the sounds of looks and the looks of sounds.

Because of this, when your brain hears something but cannot see it, your brain does not just sit by and refrain from guessing what it might have looked like.

When your auditory system makes sense of something, it will have a tendency to activate visual areas, eliciting imagery of its best guess as to the appearance of the stuff making the sound.

For example, the sound of your neighbor’s rustling tree may spring to mind an image of its swaying lanky branches. The whine of your cat heard far way may evoke an image of it stuck up high in that tree. And the pumping of your neighbor’s kid’s BB gun can bring forth an image of the gun being pointed at Foofy way up there.

Your visual system has, then, strong opinions about the proper look of the things it hears.

And, bringing ourselves back to music, we can use the visual system’s strong opinions as a means for gauging music’s meaning.

In particular, we can ask your visual system what it thinks the appropriate visual is for music.

If, for example, the visual system responds to music with images of beating hearts, then it would suggest, to my disbelief, that music mimics the sounds of heartbeats. If, instead, the visual system responds with images of pornography, then it would suggest that music sounds like sex. You get the idea.

But in order to get the visual system to act like an oracle, we need to get it to speak. How are we to know what the visual system thinks music looks like?

One approach is to simply ask which visuals are, in fact, associated with music? For example, when people create imagery of musical notes, what does it look like? One cheap way to look into this is simply to do a Google (or any search engine) image search on the term “musical notes.” You might think such a search would merely return images of simple notes on the page.

However, that is not what one finds. To my surprise, actually, most of the images are like the one in the nearby figure, with notes drawn in such a way that they appear to be moving through space.

Notes in musical notation never actually look anything like this, and real musical notes have no look at all (because they are sounds). And yet we humans seem to be prone to visually depicting notes as moving all about.

music, movement, notes 

Music tends to be depicted as moving.

Could these images of notes in motion be due to a more mundane association?

Music is played by people, and people have to move in order to play their instrument. Could this be the source of the movement-music association? I don’t think so, because the movement suggested in these images of notes doesn’t look like an instrument being played. In fact, it is common to show images of an instrument with the notes beginning their movement through space from the instrument: these notes are on their way somewhere, not an indication of the musician’s key-pressing or back-and-forth movements.

Could it be that the musical notes are depicted as moving through space because sound waves move through space? The difficulty with this hypothesis is that all sound moves through space. All sound would, if this were the case, be visually rendered as moving through space, but that’s not the case. For example, speech is not usually visually rendered as moving through space. Another difficulty is that the musical notes are usually meandering in these images, but sound waves are not meandering — sound waves go straight. A third problem with sound waves underlying the visual metaphor is that we never see sound waves in the first place.

Another possible counter-hypothesis is that the depiction of visual movement in the images of musical notes is because all auditory stimuli are caused by underlying events with movement of some kind. The first difficulty, as was the case for sound waves, is that it is not the case that all sound is visually rendered in motion. The second difficulty is that, while it is true that sounds typically require movement of some kind, it need not be movement of the entire object through space. Moving parts within the object may make the noise, without the object going anywhere. In fact, the three examples I gave earlier — leaves rustling, Foofy whining, and the BB gun pumping — are noises without any bulk movement of the object (the tree, Foofy, and the BB gun, respectively). The musical notes in imagery, on the other hand, really do seem to be moving, in bulk, across space.

Music is like tree-rustling, Foofy, BB guns and human speech in that it is not made via bulk movement through space. And yet music appears to be unique in this tendency to be visually depicted as moving through space.

In addition, not only are musical notes rendered as in motion, musical notes tend to be depected as meandering.

When visually rendered, music looks alive and in motion (often along the ground), just what one might expect if music’s secret is that it sounds like people moving.

A Google Image search on “musical notes” is one means by which one may attempt to discern what the visual system thinks music looks like, but another is to simply ask ourselves what is the most common visual display shown during music. That is, if people were to put videos to music, what would the videos tend to look like?

Lucky for us, people do put videos to music! They’re called music videos, of course. And what do they look like?

The answer is so obvious that it hardly seems worth noting: music videos tend to show people moving about, usually in a time-locked fashion to the music, very often dancing.

As obvious as it is that music videos typically show people moving, we must remember to ask ourselves why music isn’t typically visually associated with something very different. Why aren’t music videos mostly of rivers, avalanches, car races, wind-blown grass, lion hunts, fire, or bouncing balls?

It is because, I am suggesting, our brain thinks that humans moving about is what music should look like…because it thinks that humans moving about is what music sounds like.

Musical notes are rendered as meandering through space. Music videos are built largely from people moving, and in a time-locked manner to the music. That’s beginning to suggest that the visual system is under the impression that music sounds like human movement.

But if that’s really what the visual system thinks, then it should have more opinions than simply that music sounds like movement. It should have opinions about what, more exactly, the movement should look like.

Do our visual systems have opinions this precise? Are we picky about the mover that’s put to music?

You bet we are! That’s choreography. It’s not enough to play a video of the Nutcracker ballet during Beatles music, nor will it suffice to play a video of the Nutcracker to the music of Nutcracker, but with a small time lag between them. The video of human movement has to have all the right moves at the right time to be the right fit for the music.

These strong opinions about what music looks like make perfect sense if music mimics human movement sounds. In real life, when people carry out complex behaviors, their visual movements are tightly choreographed with the sounds – because the sight and sound are due to the same event. When you hear movement, you expect to see that same movement. Music sounds to your brain like human movement, which is why when your brain hears music, it expects that any visual of it should be consistent with it.

~~~~~~

This was adapted from Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books, 2011). It first appeared July 26, 2010, at Psychology Today.

Mark Changizi is Professor of Human Cognition at 2ai, and author of The Vision Revolution.

Read Full Post »

It is my pleasure to announce that my upcoming book, HARNESSED (Benbella, 2011) can now be pre-ordered at Amazon!

It is about how we came to have language and music. …about how we became modern humans. See http://changizi.wordpress.com/book-harnessed/ for more about the book.

~~~

Mark Changizi is Professor of Human Cognition at 2AI, and the author of The Vision Revolution (Benbella Books) and the upcoming book Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books).

Read Full Post »

I believe that music sounds like people, moving.

Yes, the idea may sound a bit crazy, but it’s an old idea, much discussed in the 20th century, and going all the way back to the Greeks. There are lots of things going for the theory, including that it helps us explain (1) why our brains are so good at absorbing music (…because we evolved to possess human-movement-detecting auditory mechanisms), (2) why music emotionally moves us (…because human movement is often expressive of the mover’s mood or state), and (3) why music gets us moving (…because we’re a social species prone to social contagion).

And as I describe in detail in my upcoming book – “Harnessed: How Language and Music Mimicked Nature and Transformed Ape To Man” – music has the signature auditory patterns of human movement (something I hint at here http://www.science20.com/mark_changizi/music_sounds_moving_people ).

Here I’d like to describe a novel way of thinking about what the meaning of music might be.

Rather than dwelling on the sound of music, I’d like to focus on the look of music.

In particular, what does our brain think music looks like?

It is natural to assume that the visual information streaming into our eyes determines the visual perceptions we end up with, and that the auditory information entering our ears determines the events we hear. But the brain is more complicated than this. Visual and auditory information interact in the brain, and the brain utilizes both to guess the single scene to render a perception of. For example, the research of Ladan Shams, Yukiyasu Kamitani and Shinsuke Shimojo at Caltech have shown that we perceive a single flash as a double flash if it is paired with a double beep. And Robert Sekuler and others from Brandeis University have shown that if a sound occurs at the time when two balls pass through each other on screen, the balls are instead perceived to have collided and reversed direction. These and other results of this kind demonstrate the interconnectedness of visual and auditory information in our brain. Visual ambiguity can be reduced with auditory information, and vice versa. And, generally, both are brought to bear in the brain’s attempt to infer the best guess about what’s out there.

Your brain does not, then, consist of independent visual and auditory systems, with separate troves of visual and auditory “knowledge” about the world. Instead, vision and audition talk to one another, and there are regions of cortex responsible for making vision and audition fit one another. These regions know about the sounds of looks and the looks of sounds. Because of this, when your brain hears something but cannot see it, your brain does not just sit by and refrain from guessing what it might have looked like. When your auditory system makes sense of something, it will have a tendency to activate visual areas, eliciting imagery of its best guess as to the appearance of the stuff making the sound. For example, the sound of your neighbor’s rustling tree may spring to mind an image of its swaying lanky branches. The whine of your cat heard far way may evoke an image of it stuck up high in that tree. And the pumping of your neighbor’s kid’s BB gun can bring forth an image of the gun being pointed at Foofy way up there.

Your visual system has, then, strong opinions about the proper look of the things it hears. And, bringing ourselves back to music, we can use the visual system’s strong opinions as a means for gauging music’s meaning. In particular, we can ask your visual system what it thinks the appropriate visual is for music. If, for example, the visual system responds to music with images of beating hearts, then it would suggest, to my disbelief, that music mimics the sounds of heartbeats. If, instead, the visual system responds with images of pornography, then it would suggest that music sounds like sex. You get the idea.

But in order to get the visual system to act like an oracle, we need to get it to speak. How are we to know what the visual system thinks music looks like? One approach is to simply ask which visuals are, in fact, associated with music? For example, when people create imagery of musical notes, what does it look like? One cheap way to look into this is simply to do a Google (or any search engine) image search on the term “musical notes.” You might think such a search would merely return images of simple notes on the page. However, that is not what one finds. To my surprise, actually, most of the images are like the one in the nearby figure, with notes drawn in such a way that they appear to be moving through space. Notes in musical notation never actually look anything like this, and real musical notes have no look at all (because they are sounds). And yet we humans seem to be prone to visually depicting notes as moving all about.

Could these images of notes in motion be due to a more mundane association? Music is played by people, and people have to move in order to play their instrument. Could this be the source of the movement-music association? I don’t think so, because the movement suggested in these images of notes doesn’t look like an instrument being played. In fact, it is common to show images of an instrument with the notes beginning their movement through space from the instrument: these notes are on their way somewhere, not an indication of the musician’s key-pressing or back-and-forth movements.

Could it be that the musical notes are depicted as moving through space because sound waves move through space? The difficulty with this hypothesis is that all sound moves through space. All sound would, if this were the case, be visually rendered as moving through space, but that’s not the case. For example, speech is not usually visually rendered as moving through space. Another difficulty is that the musical notes are usually meandering in these images, but sound waves are not meandering – sound waves go straight. A third problem with sound waves underlying the visual metaphor is that we never see sound waves in the first place.

Another possible counter-hypothesis is that the depiction of visual movement in the images of musical notes is because all auditory stimuli are caused by underlying events with movement of some kind. The first difficulty, as was the case for sound waves, is that it is not the case that all sound is visually rendered in motion. The second difficulty is that, while it is true that sounds typically require movement of some kind, it need not be movement of the entire object through space. Moving parts within the object may make the noise, without the object going anywhere. In fact, the three examples I gave earlier – leaves rustling, Foofy whining, and the BB gun pumping – are noises without any bulk movement of the object (the tree, Foofy, and the BB gun, respectively).  The musical notes in imagery, on the other hand, really do seem to be moving, in bulk, across space.

Music is like tree-rustling, Foofy, BB guns and human speech in that it is not made via bulk movement through space.  And yet music appears to be unique in this tendency to be visually depicted as moving through space. In addition, not only are musical notes rendered as in motion, musical notes tend to be depected as meandering.

When visually rendered, music looks alive and in motion (often along the ground), just what one might expect if music’s secret is that it sounds like people moving.

A Google Image search on “musical notes” is one means by which one may attempt to discern what the visual system thinks music looks like, but another is to simply ask ourselves what is the most common visual display shown during music. That is, if people were to put videos to music, what would the videos tend to look like?

Lucky for us, people do put videos to music! They’re called music videos, of course. And what do they look like? The answer is so obvious that it hardly seems worth noting: music videos tend to show people moving about, usually in a time-locked fashion to the music, very often dancing.

As obvious as it is that music videos typically show people moving, we must remember to ask ourselves why music isn’t typically visually associated with something very different. Why aren’t music videos mostly of rivers, avalanches, car races, wind-blown grass, lion hunts, fire, or bouncing balls? It is because, I am suggesting, our brain thinks that humans moving about is what music should look like…because it thinks that humans moving about is what music sounds like.

Musical notes are rendered as meandering through space. Music videos are built largely from people moving, and in a time-locked manner to the music. That’s beginning to suggest that the visual system is under the impression that music sounds like human movement. But if that’s really what the visual system thinks, then it should have more opinions than simply that music sounds like movement. It should have opinions about what, more exactly, the movement should look like. Do our visual systems have opinions this precise? Are we picky about the mover that’s put to music?

You bet we are! That’s choreography. It’s not enough to play a video of the Nutcracker ballet during Beatles music, nor will it suffice to play a video of the Nutcracker to the music of Nutcracker, but with a small time lag between them. The video of human movement has to have all the right moves at the right time to be the right fit for the music.

These strong opinions about what music looks like make perfect sense if music mimics human movement sounds. In real life, when people carry out complex behaviors, their visual movements are tightly choreographed with the sounds – because the sight and sound are due to the same event. When you hear movement, you expect to see that same movement. Music sounds to your brain like human movement, which is why when your brain hears music, it expects that any visual of it should be consistent with it.

~~~

This was adapted from Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books,2011).

~~~

This first appeared July 28, 2010, at Science 2.0.

Mark Changizi is Professor of Human Cognition at 2AI, and the author of The Vision Revolution (Benbella Books) and the upcoming book Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella Books).

Read Full Post »

There’s a good chance that you’re listening to music while reading this, and if you happen not to be, my bet is that you listen to music in the car, or at home, or while jogging. In all likelihood, you love music – simply love it.

Why?  What is it about those auditory patterns counting as “music” that makes us relish it so?

I have my own opinion about the answer, the topic of my recently finished book that will appear next year, Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man. I’ll give you a hint as to my view at the end of this piece, but what I’d like to do in this piece is to put forth four hurdles I believe any theory of music must leap over.

Brain: Why do we have a brain for music?
Emotion: Why is music emotionally evocative?
Dance: Why do we dance?
Structure: Why is music structurally organized as it is?

If a theory can answer all four questions, then I believe we should start paying attention.

To help clarify what I mean by these questions, let’s run through them in the context of a particular lay theory of music, namely the “heartbeat” theory of music. Although there is probably not just a single heartbeat theory put forth by lay people, the main motivation appears to be that a heart carries a beat, something fundamental to music. Of course, we don’t typically hear our own heartbeat, much less others, so when it is fleshed out I have heard it suggested that it comes from our in-utero days. One of the constants of the good fetus life was Momma’s heartbeat, and music takes us back to the oceanic, one-with-the-universe feelings we long ago lost. I’m not suggesting this is a good theory, by any means, but it will aid me in illustrating the four hurdles.  I would be hesitant, by the way, to call this “lub-dub” theory of music crazy – our understanding of the origins of music is so woeful that any non-spooky theory is worth a look. Let’s see how lub-dubs fare with our four hurdles for a theory of music.

The first hurdle was this: “Why do we have a brain for music?” That is, why are our brains capable of processing music? For example, fax machines are designed to process the auditory modulations occurring in fax machine communication, but to our ears fax machines sound like a fairly continuous screechy-brrr – we don’t have brains capable of processing fax machine sounds. Music may well sound homogeneously screechy-brrrey to non-human ears, but it sounds richly dynamic and structured to our ears. How might the lub-dub theorist answer why we have a brain for music?

Best I can figure, the lub-dubber could say that our in-utero days of warmth and comfort get strongly associated to Momma’s heartbeat, and the musical beat taps into those associations, bringing back warm fetus feelings.

One difficulty for this hypothesis is that learned associations often don’t last forever, so why would those Momma’s-heartbeat associations be so strong among adults? There are lots of beat-like stimuli out of the womb: some are nice, some are not nice. Why wouldn’t those out-of-the-womb sounds become the dominant association, with the Momma’s heartbeat washed away? And if Momma’s lub-dubs are, for some reason, not washed away, then why aren’t there other in-utero experiences that forever stay with us? Why don’t we, say, like to wear artificial umbilical cords, thereby bringing forth recollections of the womb? “Cuddle with your umbilicus just like the old days. You’ll sleep better. Guaranteed!” And why, at any rate, do we think we were so happy in the womb?  Maybe those days, supposing they leave any trace at all, are associated with nothing whatsoever. (Or perhaps with horror.) The lub-dub theory of music does not have a plausible story for why we have a brain ready and excited to soak up a beat.

The lub-dub theory of music origins also comes up short on the second major demand on a theory of music – that it explain why music is evocative, or emotional.  Heartbeat sounds amount to a one-dimensional parameter – faster or slower rate – and are not sufficiently rich to capture much of the range of human emotion.  Accordingly, heartbeats won’t help much in explaining the range of emotions music can elicit in listeners.

Psychophysiologists who look for physiological correlates of emotion take a variety of measurements (e.g., heart rate, blood pressure, skin conductance), not just one. Heart sounds aren’t rich enough to tug at all music’s heart strings.

Heartbeats also fail the “dance” hurdle. The “dance” requirement is that we explain why it is that music should elicit dance. This fundamental fact about music is a strange thing for sounds to do. In fact, it is a strange thing for any stimulus to do, in any modality. For lub-dubs, the difficulty for the dance hurdle is that even if lub-dubs were fondly recalled by us, and even if they managed to elicit a wide range of emotions, we  would have no idea why it should provoke post-uterin people to move, given that even fetuses don’t move to Momma’s heartbeat.

The final requirement of a theory of music is that it explain the structure of music, a tall order. Lub-dubs do have a beat, of course, but heartbeats are far too simple to possibly explain the many other structural regularities found in music. For starters, where is the melody?

Sorry, Mom. Thanks for the good times in your uterus, but I’m afraid your heartbeats are not the source of my fascination with music.

To tip my hand on my upcoming book, my view is that music has been culturally selected over time to sound like human movement, something I have also hinted at in the following pieces…

http://www.scientificblogging.com/mark_changizi/music_sounds_moving_people

http://changizi.wordpress.com/2009/09/25/scientific-american-piece-why-does-music-make-us-feel/

We have a brain for music because auditory mechanisms for recognizing what people are doing around us are clearly advantageous, and were selected for. Music is evocative because it sounds like human behaviors, many which are expressive in their nature. Music gets us dancing because we social apes are prone to mimic the movements of others. And, finally, the movement theory is sufficiently powerful that it can explain a lot of the structure of music – that requires much of the my book to describe. I admit that my hypothesis sounds implausible, and I ask that you wait to hear the book-length argument for it.

This first appeared on April 6, 2010, as a feature at Science 2.0

=============

Mark Changizi is a professor of cognitive science at Rensselaer Polytechnic Institute, and the author of The Vision Revolution (Benbella Books).


Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 58 other followers